| 介电温谱测量 | 电阻率测量 | 探针台 | 样品制备 |
| 教学型介电阻抗温谱仪 | 导电材料电阻率测量系统 | 常温基础型探针台 | 真空封管机+系统 |
| 高温介电阻抗温谱仪 | 半导体电阻率测量系统 | 材料电学测量专用探针台 | 油浴高压极化装置 |
| 高低温介电阻抗温谱仪 | 绝缘材料电阻率测量系统 | 微型真空探针台 | 分子泵机组 |
| TSC系列热激励电流测量系统 | 薄膜四探针测量系统 | 高精度铁电分析仪 | 液氮传输泵 |
| | 气敏元件测量系统 | 压电温谱测量系统 | 全自动真空封管机 |
| | 热敏元件测量系统 | | 压电陶瓷高压极化装置 |
| 应用和行业 | | | |
| 教学和教学实验室 | 薄膜材料 | 铁电材料 | 高温合成 |
| 功能陶瓷 | 绝缘材料 | 电阻测量 | |
| 光电测试 | 电介质材料 | 聚合物材料 | |
| 半导体材料 | 热电材料 | 碳复合材料 | |
| 导电金属材料 | 压电材料 | 氧化物材料 | |
2017年过半,海内外华人学者在科学领域硕果累累,顶刊发文量就足以说明一切,那么现在就让我们一起进行年中大盘点,细数上半年华人学者在Nature上的成果吧!
1、北大张锦:精致设计的催化剂助力单壁碳纳米管可控手性生长
北京大学张锦教授(通讯作者)在Nature上发表了一篇题为“Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts”的文章,文中报道了张锦教授研究团队关于单壁碳纳米管(SWNTs)生长的最新研究成果。该研究团队通过控制活性催化剂表面对称性来控制水平SWNT阵列的手性,并在固态碳化物催化剂表面生长获得了具有受控手性的水平SWNT阵列。所获得的水平排列金属SWNT阵列平均密度大于20管/微米,其中90%的管具有(12,6)的手性指数。同时,还获得SWNT阵列半导体,其平均密度大于10管/微米,其中80%的纳米管具有(8,4)的手性指数。
文献链接:Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts(Nature,2017,DOI:10.1038/nature21051)
2、北大马丁:首次利用Pt/α-MoC催化剂实现低温甲醇/水反应产氢
北京大学马丁与中国科学院大学周武、山西煤化所/中科合成油温晓东以及大连理工大学石川研究团队于Nature上发表一篇题为“Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts”的文章。该科研团队研制了双功能Pt/MoC甲醇液相重整制氢复合催化剂体系,利用程序升温渗碳工艺将甲烷和氢气同各种前驱体混合在一起,制成多种铂改性的碳化钼催化剂。经过材料的表征分析发现,与β-Mo2C相比,α-MoC和铂的相互作用更加强烈,使得高温活化过程中铂在α-MoC表面处于一种原子级分散态,产生一个极高密度的电子-缺陷表面Pt位点,且该位点能用于吸附/活化甲醇。同时,α-MoC表现出极高的水解离活性,在反应过程中产生丰富的表面羟基,加速铂与α-MoC界面处反应中间体的重整。在这些因素的共同作用下,最终所制成的Pt/α-MoC催化剂具有平均转化频率(ATOF)为18046 h-1的催化效率,在低温(150 ℃-190 ℃)无碱甲醇液相重整过程中也具有很好的稳定性。
文献链接:Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts(Nature,2017,DOI:10.1038/nature21672)
3、香港城市大学吕坚:双相纳米结构铸就史上最强镁合金
法国国家科技科学院院士、香港城市大学副校长吕坚(通讯作者)研究团队于Nature上发表一篇题为“Dual-phase nanostructuring as a route to high-strength magnesium alloys”的文章。该科研团队研制了双相纳米晶结构的镁合金材料,通过磁控溅射法将直径约6 nm的MgCu2晶粒均匀地嵌入约2 nm厚的富含镁的无定形壳中,生产获得具有非晶/纳米晶双相结构的镁基超纳尺寸双相玻璃晶(SNDP-GC)。该双相材料结合并加强了纳米晶材料与非晶纳米材料的优势,在室温下表现出接近理想的强度,并且解决了样品尺寸效应问题。研究团队所制成的镁合金体系是由埋在无定型玻璃壳中的纳米晶核组成,所得双相材料的强度是近乎理想的3.3 GPa,这也是迄今为止强度最大的镁合金薄膜。同时,研究者提出了一种由本构模型组成的强度增强机制,在材料制备过程中形成了一个由直径约6 nm且几乎无位错的晶粒组成的结晶相,当应变发生时该结晶相阻止了局部剪切带的移动传播,在任何已出现的剪切带内,嵌入的晶粒分裂和旋转,也有利于材料强化和抵抗剪切带的软化效果。
文献链接:Dual-phase nanostructuring as a route to high-strength magnesium alloys(Nature,2017,DOI:10.1038/nature21691)
4、北科大吕昭平:最低晶格错配与高密度纳米析出相联手打造超强钢!
北京科技大学吕昭平教授课题组于Nature上发表一篇题为“Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation”的文章,通过创新超高强度钢的合金设计理念,发展了超强韧的高密度有序Ni(Al, Fe)纳米颗粒强化高性能新型马氏体时效钢,其中抗拉强度不低于2.2GPa,拉伸塑性不低于8% 。新型超高强韧钢的强化主要是基于最低错配度下获得最大程度弥散析出和高剪切应力的创新思想,即一方面通过“点阵错配度最小化”,显著降低金属间化合物颗粒析出的形核势垒,促进颗粒均匀弥散分布,并显著提高强化颗粒的体积密度和热稳定性,低错配度共格界面结合小尺度有效缓解增强颗粒周边微观弹性畸变,改善材料宏观均匀塑性变形能力;另一方面,引入“有序效应”作为主要强化机制,有效阻碍位错对增强相颗粒的切过作用,从而获得优异综合性能的新型马氏体时效钢。除此之外,新型超强韧马氏体时效钢通过采用Al元素代替传统马氏体时效钢中昂贵的合金元素,可添加传统马氏体时效钢所避免的C元素,初步实现了高端钢铁材料的制备工艺简化和低成本的目标,不但有力地推动该类材料的实际工程应用,同时为新型超高强度材料的发展打开了新的研究思路
文献链接:Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation(Nature,2017,DOI:10.1038/nature22032)
5、加州大学伯克利分校张翔院士:二维分子晶体本征铁磁性的发现!
美国加州大学伯克利分校的张翔院士(美国国家工程院院士、台湾中央研究院院士)、雷干城院士(美国国家科学院院士、美国艺术与科学学院院士)和Jing Xia(共同通讯作者)等人发表题为“Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals”的研究论文,借助扫描磁光克尔显微镜揭示了Cr2Ge2Te6原子层中本征的长程铁磁有序性。在这个软磁、二维分子铁磁体材料中,利用很小的磁场(小于0.3 T),首次实现了对转变温度(铁磁和顺磁状态间发生转变时的温度)的调控,与磁场下、三维体系材料转变温度的不敏感性有明显的对比。同时发现施加非常小的磁场时,较不施加状态的磁晶各向异性,将会导致更大的有效各向异性,开放更大的自旋波激发间隙。利用重整化的自旋波理论对所观察到的现象进行分析,推断在二维铁磁分子晶体中,转变温度与磁场间的关系是其本征的特异性。Cr
关注佰力博微信公众号
+86 027 86697559
+18207135787(电学销售杨经理)
+18171486491(真空封管梅经理)
产品目录
产品技术资料
扫码在线教学
远程在线视频指导
维修在线查询
17364077926售后工程师刘工